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ABSTRACT 

The standard methods of projecting energy spectra from Hartree- 
Fock intrinsic wave functions become very time- consuming as the 
model space is enlarged. One of these methods, however, can be 
revised so as to minimize storage and handling requirements. A 
careful description of the technique is presented for the general case, 
together with sections concerning simplifications resulting from cer- 
tain nuclear symmetries, and suggestions related to efficiency and 
accuracy in the actual calculation. 

INTRODUCTION 

The abundance of experimental information supporting the shell 
model of the nucleus has made it our most valuable tool for investi- 
gating nuclear structure. Shell model calculations become quite com- 
plex for  deformed nuclei, however, because of the large number of 
configurations which must be employed. As a result of this, the 
Hartree-Fock model has in recent years become a very popular sub- 
stitute for the shell model. In some fashion which is not yet entirely 
clear, the extra degrees of freedom afforded by the intrinsic Hartree- 
Fock wave function contrive to produce extrinsic, o r  physical, states 
which are in many ways equivalent o r  superior to shell model states. 

One problem associated with the Hartree-Fock model is that 
physical states must be extracted from the intrinsic wave function by-  
some form of angular momentum projection. When one is dealing only 
with expectation values of single-particle operators the problem is not 
too difficult, and has recently been treated in a systematic manner. (1-3) 
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To find the energy spectrum of a nucleus, however, one needs the ex- 
pectation value of a two-particle operator - and the problem is then 
vastly more complicated. 

Four  different methods of energy projection are discussed by 
Ripka.(4) Of these, the first two are hopelessly impractical for nuclei 
with more than a few active nucleons. The third method makes use  of 
a complete set of intermediate two- particle two-hole states to evaluate 
tbe required matrix elements; simplifications which arise for  even- 
even N = Z nuclei are described in some detail by 'Fewari and 
Grillot. (5) The basic difficulty with this method is that the sum over 
intermediate states is really a sum over unoccupied orbits, and thus, 
when the model space is enlarged to reduce truncation e r ro r ,  the 
number of te rms  becomes inordinately large.  

By making use of closure one may transform the sum over un- 
occupied orbits into a sum over the occupied orbits, leading to the 
fourth method mentioned briefly by Ripka. F o r  large model spaces 
this technique should be the most efficient, if properly applied. A 
version employed by Gunye and Warke(') has the disadvantage that it 
involves two-body matrix elements depending on the magnetic quantum 
numbers; the total number of matrix elements which must be handled 
is thus very large.  The version presented he re  constructs coupled 
orbital matrix elements f rom the coupled two-body matrix elements, 
thus minimizing storage and handling requirements. A complete 
treatment is given fo r  the most genera€'case, followed by sections de- 
scribing the simplifications resulting from certain kinds of symmetry. 
A concluding section suggests some means of improving efficiency 
and accuracy in the actual calculation. 

THEORY 

In the axially-symmetric ock model for  deformed 
nuclei, the intrinsic state of a nucleus is represented by a Slater de- 
terminant Q> which is an eigenstate of J,, 
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2 but not of J a Physical states of the nucleus must therefore be ob- 

tained by means of a projection operator, 

- - 25 + 1 ' dm (e)&3)sin 8 de, 
n 

J N 

where @ ( e )  = exp(-iBJ )@. By construction, the operator PNaK picks 
out that part of a function with angular momentum quantum numbers J 
and K, and changes it so  that its J,-eignevalue is BM. 

An important nuclear property is its energy spectrum, which may 
be determined by evaluating the matrix element 

Y 

o r  more generally, 

where @ is another (possibly identical) Slater determinant. 

most efficient in the final analysis. To begin with w e  have 
A s  is often the case, a straightforward approach proves to be the 

(O)H(B)sin e de, HJ = d ~ ? ~  

where 
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Now the function ip may be expanded in either of the forms 

A 
@ ( l a .  e . A ) =  A INa) ip (23 e . . A )  

Na 
Na 

A 
N N  ip ( 3 4 .  . .A) ,  - 1/2 

=[=(A - 1)-J I a b) NaNb 
NaNb 

where INa) is a single-nucleon orbital function with the properties 

and I NaNb) is a normalized, antisymmetric orbital pair function: 

Using these expansions we  obtain 

where the rotated orbitals Isa) are defined by 
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Let us now indicate explicitly the dependence of the various matrix 
elements on the rotation angle 8. We begin with the identity 

JM 

f rom which it follows that 

JMM' 
W N  

A similar  relation holds fo r  the orbital-pair state IN N ), and in both 
cases the inner sum over M reduces to one te rm because the operand 
states are eigenfunctions of J,. The orbital kinetic energy matrix 
element thus becomes 

a b  

and, with a similar abbreviation, 

= m + mb and M&b = mv + mb. W e  refer to ( N ~ I  T~ 1 ~ ~ )  a 

The angular dependence of the various overlap integrals cannot be 
and (NHN; V N N ) as coupled orbital matrix elements. where J laa  b 

displayed s o  explicitly. 
portional to the overlap integral 

t turns out, however, that they are all pro- 
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which is a very sharply peaked function of its argument. This de- 
pendence may be factored out by defining the one- and two-nucleon 
density matrices 

in te rms  of which 

The matrices p(') and p ( 2 )  are angle-dependent, but weakly so, and 
satisfy the relationship 

he Qne-nucleon density matrix p(') is numerically equal to the trans- 
pose inverse of the matrix G whose elements are 



and one may further show that A(0) = det ((NHI GINa)) e 

orbitals will be assumed to be eigenstates of the z-component of the iso- 
topic spin operator, so  that 

Next w e  turn to the question of isotopic spin. The single-nucleon 

The kinetic energy integrand t(0)  will therefore divide into two parts, 
t (e) and tn(e). The first consists of all those terms in t(e) for which P 
both N% and Na refer to proton orbits; the second consists of the re- 
maining terms, for  which both NL and Na refer to neutron orbits. 
There are no cross  terms. 

The potential energy integrand v(0) divides into three parts, v (e), 
vn(e), and v ( e ) ,  The first consists of those terms in v(8) for which 
all four labels refer to proton orbits; the second consists of those terms 
for  which all four labels refer to neutron orbits. The third part v (e) 
consists of the remaining terms in v(O), which involve only orbital pairs 
in which one nucleon is a proton and the other is a neutron. 

Using symmetry arguments one may restr ic t  the summation for  
v (e) s o  that NH and Na refer to proton orbits and Ni and Nb to 
neutron orbits, provided the result is multiplied by four. Similar argu- 
ments allow one to res t r ic t  the summation for  v (0)  and vn(8) so  that 
nb < na and nh < n;, again provided'that the result is multiplied by four, 

u s e  the identity 

I 

P 
Pn 

Pn 

Pn 

P 

It is convenient to introduce an isospin projection operator P 

'/ \ 
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f o r  this allows part  of the dependence of the coupled orbital matrix ele- 
ments on the labels T~~ Tb to be isolated: 

' N ' I V  IN N ) = (Na b J a b 
T=O 

The isospin-coupled orbital pair  state IN N is defined by 
b)T 

being asinglet  o r  triplet isospin function, and the coefficient XT 
AT(TaTb) has the value GT1 for the integrands v ( e )  and vn(e) and the 
value 1/2 for the integrand v ( e ) .  

Finally w e  consider the question of parity, It is generally assumed 
that each single-nucleon orbital INa) is an eigenfunction of the parity 
operator with eigenvalue ra; this permits further restrictions on the 
summations. In particular, the orbital pairs (Na, Nb) needed to evaluate 
v(0) can be classified as shown in Table I: 

P 
Pn 

TABLE I. - (Na9Nb) QRBITAL 

PAIR ORDERING 

Parity 

(+s +) 
( - 9  4 

Other 
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The most general solution of the Hartree-Fock equations would, of 
course, yield the exact radial and angular dependence of all the orbital 
functions. Usually the complexities of this task are avoided by assuming 
that each orbital function is accurately described by an expansion 

in te rms  of a limited number of orthonormal (single-particle) basis 
functions Ikm,) which are eigenfunctions of jz  with eigenvalue Ema, 
eigenfunctions of the parity operator with eigenvalue n and are other- 
wise labeled by the index k. When the basis functions are also individ- 
ually eigenfunctions of j2 they are said to form a spherical basis; this 
is the only kind considered here, We assume that the simplified 
Hartree-Fock equations have been solved and that the coefficients Ck(N ) 
are known. 

eventually to be constructed, may now be written 

a’ 

a 

and A are The elements of the matrix GJf from which p(’),  

The coefficients Dk(Nk) are the analogues of ck(Na) for  the final-state 
orbitals IN;), which we assume are also described by the same  set of 
basis functions {I km,)) . The kinetic energy matrix elements are simi- 
lar in structure,  having the form 
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IITllkl) being the reduced matrix element (which for  the rotationally 
invariant kinetic energy operator is numerically equal to (k2m 1 TI klm) 
f o r  any m). 

basis-pair states coupled to good J and T, 

% 

To evaluate the potential energy matrix elements we introduce 

in t e rms  of which 

The exchange symmetries of 
Clebsch- Gordon coefficients 
€0 rm 

the coupled basis-pair states and the 
permit this to be written in the abbreviated 

f'ab) 
'k k (NaNb)lklk28 JT , 1 2  J 

JT where the coupled coefficients ck  k (NaNb) are defined by 
1 2  

with the proviso that only the first te rm shall be used when kl = k2 and 
T = 0. The coupled orbital potential energy matrix elements may now be 
expressed quite simply as 
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k3k4 JT (NvNq)CJT a b klk2 (NaNb) 

are the conventional two-body coupled matrix 

elements. 

NEUTRON- PROTON SYMMETRY 

For  nuclei with N = Z, it is common to assume that @ has n-p 
symmetry; that is, for  each neutron orbital Ina)'l 7a) in @ there is a 
corresponding proton orbital I na) I - 7a) identical except for isotopic spin 
(and similarly for @'). The functions Ina) do not depend on 7a in this 
case, and hence the kinetic energy integrand may be written 

Now, in general, when it occurs in v ( e )  the two-nucleon density Pn 
matrix has only one term, 

whereas in v ( e )  and vn( e )  both of its te rms  contribute. By rearranging 
the te rms  in the series, however, it is possible in the case of n-p sym- 
metry to express the potential energy integrand in te rms  of the isospin- 
coupled density matrices 

P 
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which are defined with the proviso that when na = nb 
the first term is to be used. The final result is 

RY(r) SYMMETRY 

The operator which rotates the z-axis through an angle e about the 
y-axis is given by 

-ieJ 
R (e)  = e Y. Y 

The special case 8 = IT is important, for the spherical basis functions 
tranqform in a particularly simple way when R (1~) is applied: 

Y 

j-m R (a)lkm) = (-1) Ik - m).  Y 

In general, the orbitals I Na) do not possess corresponding prop- 
ertiee. However, for  nuclei with even Z and even N, it is often as- 
sumed that ip itself has R (IT) symmetry; that is, for  each orbital 
IN ) in ip there is a corresponding orbital INa) which satisfies 

Y 
a 

A s  a result, the expansion of ip may be written 
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where, for convenience, we specify the subgroup {IN,)) of orbitals 
which serve  to define by the requirement that ma > 0 for  each 
member INa). Clearly 92 = R ( T ) @ ~ ,  and one may also show that 

Y 
then becomes 

= R ( T ) @ ~  and.  ib2 = py(~fl-' @*. The T'rotated'v state function % 

and, from the symmetry properties of the reduced rotation matrices, 

Cons equently the integrand ( e )  may be written 

and, if @ ?  also possesses ( T )  symmetry, 
Y 
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In either case H(0) is of the form 
change of variable in the second term one may obtain 

(a - e),  and by a 

Since the quantum numbers ma from INa) and IRa) will 

8 de. 

cancel in 
pairs to give K = 0 (regardless of the symmetry assumed for  ch ' ) ,  this 
reduces to 

J = 0,2,4, . . . 
For the evaluation of V(0) it is convenient to employ a different 

specification of the manner in which ch is split into two functions 
R (a)@, and @, = RY(a)a1. This is accomplished by considering 

the expansion 
@1= y 

and defining the subgroup (INaNb)} by the requirement that Mab > 0 o r  
Mab = o and m > 0. ~n this way only the rotation matrices dhM,(e)  for 
M,M' 2 0 need be calculated. 

a 

MECEL LANEOUS DE TAILS 

By far the mst time-consuming part  of the calculation is the con- 
struction of first the coupled coefficients CJ . (NaNb) and then the coupled 

k1k2 
matrix elements e This task is further complicated by 
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the necessity of keeping track of all the indices in an efficient manner, 

by isospin, then by parity, and last by Mab. (Note that for a given J, 
only those pairs with I Mabl 5 J will contribute. ) The basis pairs may 
be ordered in a somewhat similar fashion: first by parity, and then by 
J (such that I j ,  - j21 5 J 5 j ,  + j2) .  Thus the pairs are arranged in the 
order in which they will be needed, and can be located by a single in- 
crementing index. 

culated in advance, stored, and retrieved as needed. Ordinarily this 
requires some testing of the angular momentum quantum numbers to 
avoid dealing with those coefficients which automatically vanish. This 
testing is time-consuming, however, and it may prove to be more effi- 
cient in the final analysis to dispense with it entirely and simply multiply 
by the zero coefficient. The storage and retrieval problem can also be 
simplified if  zero coefficients do not have to be avoided. Whatever the 
choice, it is worthwhile to check that min(j 1, j,) 2 min( I ma I , I mb I ), as 
these quantities can be calculated in advance when the pairs are ordered 
and later referenced by the same  incrementing indices, 

Once the coupled matrix elements have been obtained, the integrands 
t (0)  and v(6) are computed for selected angles by summing over the 
initial-and final-state orbitals. In the usual case where GPp = @ ?  one can 
substantially shorten the calculation by making the replacements 

Probably the best approach is to order the orbital pairs (NaNb) first 

Much time can be saved if the Clebsch-Gordan coefficients are cal- 
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Any suitable algorithm may be used for the where E ( c Y ! , ~ )  = 1 - - 6 
numerical integration, but of course Gaussian quadrature is an obvious 
choice. It should be noted, however, that A(@) is a very sharply peaked 
function, s o  that some care  must be taken in order to insure sufficient 
accuracy. In a typical calculation for 20Ne, for  instance, A(8) falls 
from 1.0 at 8 = 0' to 0.07 at 8 = 45' to 0.001 at 8 = 65'. In con- 
trast, h(8) varies relatively slowly over the entire angular range, 
changing by less than 50 percent. Probably the most satisfactory method 
of dealing with such an integrand is to base the Gaussian quadrature on 
polynomials orthogonal with respect to a weight function similar to A(e),  
but this is an involved procedure. Fortunately the zeroes of the Legendre 
polynomials are concentrated at the ends of the angular range, and this 
feature may be further enhanced by an appropriate change of integration 
variable before the quadrature method is applied. 

1 
2 ap" 

REFERENCES 

I ,  W. F,  

2. R. C. 

3; W. F, 

Ford and R. C. Braley, NASA 

Braley and W. F. Ford, Phys. 

Ford and R. C. Braley, To be 

TN D-5879. 

Rev, 182, 1174 (1969). 

published in Nuclear Physics 
- 

4. G. Ripka, Lectures in Theoretical Physics, Vol. VIIIC (University of 
Colorado Press, 1965), pp. 237- 298. 

5. S. w. Tewari and D. Grillot, Phys. Rev. - 177, 1717 (1969). 

6, NI. R. Gunye and C. S. Warke, Phys. Rev. - 156, 1087 (1967). 


